Passer au contenu principal

Messages

Affichage des messages du avril, 2008

Évaluation de l'évaluation (deuxième partie)

Au cours de la session ou de l'année scolaire, le temps nous manque. L'un des principaux bouffe-temps, c'est la correction. Une bonne évaluation formative exige énormément de temps de correction, car pour être formative, elle doit présenter une rétroaction constructive. L'évaluation sommative devrait présenter le même niveau de correction, mais souvent la note attribuée est jugée explicative : on n'a pas juste ça à faire corriger ! En mathématique ou en sciences "dures" pour reprendre l'expression de Plotin , les pages blanches et les solutions aberrantes se corrigent assez vite : scratch, zéro. Violence, dirait Freud. Euh... que diriez-vous de justice ? 1+1 = 5, bel effort, je te donne trois points parce que tu as tenté une réponse et que tu es plus près de la vraie réponse que ton collègue qui a dit 10 qui lui n'aura qu'un point pour sa participation. Ben non ! En mathématique et en sciences dures, ça ne marche pas comme ça. Excus

Évaluation de l'évaluation (première partie)

Préambule : Selon la politique d'évaluation des apprentissages de mon établissement, nous devons respecter ces procédures : - Soumettre les étudiants à au moins trois évaluations sommatives - Soumettre les étudiants à une évaluation sommative finale d'intégration - Préparer des évaluations cohérentes, rigoureuses et fondées sur des critères précis. (Les critères d'évaluation de l'épreuve synthèse sont précisés dans les plans cadres des cours, donc prescriptifs.) - Pour réussir un cours, les étudiants doivent avoir une note minimale de 60 % sur le cumulatif de l'ensemble des évaluations sommatives réalisées et un minimum de 50 % à l'évaluation sommative finale. Quiconque déroge à cette politique est passible de la peine de mort. _______________________________ Une collègue et amie me racontait l'autre jour qu'elle avait des groupes extraordinaires cette session. Depuis le début de la session, elle a constaté les progrès de ses élèves. Changement d&#

Théorème central limite

Un site découvert (il n'était pas bien caché pourtant) cette semaine qui offre un petit programme permettant de démontrer le théorème central limite. Difficile d'être convaincant en présentant les distributions d'échantillons, ce programme ajoute un peu plus de crédibilité à ce qui souvent est perçu comme de la magie. Tout cela se trouve ici . Ce programme est tellement petit qu'il peut être installé en quelques secondes sur le plus lent des appareils. Il est bon de constater que l'on peut faire varier la taille des échantillons. Cela permet aux étudiants de mieux visualiser les effets sur la moyenne et l'écart type et d'introduire la notion de marge d'erreur. Le seul hic du programme, c'est qu'il nous oblige à suivre ses étapes (population normalement distribuée, jeu de tailles d'échantillon, distribution uniforme, puis choix de quelques autres distributions (bimodale, asymétrique, exponentielle, ...). Ces étapes restent tout de m

Citation surprenante

«Nous sommes coupables, au Québec, de n’avoir pas su valoriser le travail de nos enseignantes et de nos enseignants. [...] Dans un contexte où le besoin d’une relève de qualité se fait sentir de façon de plus en plus pressante, il est urgent de valoriser la profession enseignante au collégial, tant par une injection de ressources que par un rattrapage salarial. » Marielle Poirier, directrice générale du Cégep de l'Outaouais

Citation célèbre

Intellexuelle doit être une huître tant elle arrive à faire des perles. Aujourd'hui, elle crée un paradoxe de la langue. Selon Euclide, un angle obtus est un angle qui est plus grand qu'un angle droit, mais plus petit que deux angles droits. Pas de quoi en faire tout un plat ! Un angle obtus mesure entre 90° et 180°. Il est pas mal ouvert, pour ne pas dire tout écartillé. Par contre, un esprit obtus est un esprit fermé, étroit, pas ouvert du tout. Voici la réconciliation des deux mondes trouvée par Intellexuelle : avoir " l’esprit aussi obtus qu’un angle à 91° "

Heureux événement prévu bientôt

Oui, oui, un nouveau membre dans la famille dans quelques dodos ! Bien sûr, comme pour les bébés, les chances qu'il arrive au moment prévu sont faibles, mais quand on sait qu'il arrivera, on commence à lui faire de la place. Mon premier vrai, c'était il y a plus de 20 ans (ça ne nous rajeunit pas) ! - Ma fille, maintenant que tu es majeure et vaccinée, j'aimerais t'offrir une voiture. - Mon père, si tu veux me faire plaisir, offre-moi plutôt un Mac ! Imaginez : 128 Kb de ROM, 1 Mb de RAM. J'ai même eu droit à un disque dur externe de 20 Mb que je n'ai jamais réussi à remplir. Et un peu plus de 20 ans plus tard, pour presque la moitié du prix (en dollars constants, bien sûr), voici ce que mon Cégep me permet d'obtenir grâce à un prêt sans intérêt. Car étonnamment, s'il n'y a aucun plaisir à acheter un PC (oui, j'en ai acheté quelques uns, alors je sais de quoi je cause), acheter un Mac, ça rend aussi de bonne humeur que d'aperc

Éducation des profs

Grâce au Professeur masqué qui a écrit un magnifique billet sur le plagiat, c'est fou tout ce que j'ai pu apprendre aujourd'hui ! Vais-je dorénavant interdire les boissons dans ma classe ? Pfffffffff ! En ce qui me concerne, ça fait longtemps que la triche dans mes évaluations ne m'empêchent pas de dormir ! (Certains élèves me confient même leurs trucs que même sous la torture je ne dévoilerai pas. Houhouhouhou... )

Chris Jordan

Vous avez peut-être reçu dans vos courriels quelques oeuvres de Chris Jordan , ce photographe qui donne un sens aux grands nombres. À partir de simples statistiques qui souvent ne touchent personne, il arrive à illustrer l'intolérable ampleur de ces nombres. Du million de verres de plastique utilisés par les compagnies aériennes américaines en 6 HEURES au 15 millions de feuilles blanches utilisées dans les bureaux américains toutes les 5 MINUTES en passant par Barbie. La surconsommation en chiffres et en images. 32000 poupées Barbie représentant les 32000 augmentations mammaires effectuées chaque MOIS en 2006 aux États-Unis. ___________________________________________________________________________________ Inspiration : En 2006, les profits de Loto-Québec étaient de 1,6 G$. Sachant qu'une pièce de 1 $, un loonie, a une épaisseur de 1,95 mm, on obtiendrait comme profit une belle pile de 3120 km de hauteur, soit plus que la hauteur de l'atmosphère terrestre .

La règle de trois pour les Ministres

A - Si un stylo coûte 2 euros, combien coûteront 5 stylos ? (L'avantage avec les euros, c'est que la taxe est incluse dans le prix !!!) B - Si deux stylos coûtent 4 euros, quel est le prix d'un stylo ? Si vous avez répondu, en A, 10 euros et, en B, 2 euros, je vous dis bravo, vous connaissez la règle de trois. Mais vous êtes de piètres consommateurs. Si vous achetez 5 stylos, vous devriez bien pouvoir trouver des paquets économiques, non ? Tiens, en voilà un qui vous propose 6 stylos pour 11 euros, vous achetez ? La règle de trois est l'une de ces petites bêtes mathématiques qui croisent la route de la vie de Monsieur et Madame Tout le Monde assez souvent pour qu'elle vaille la peine d'être comprise. Pas connue. Comprise. Apprivoisée même. Une amie avec qui on accepte de jouer. Houhouhouhou... Ce qu'il faut d'abord savoir : 1- La règle de trois ne s'annonce jamais dans la vraie vie. (Vous ne lirez jamais par exemple : cette recette conv

Désolant

Quand je nous vois, je me désole : (Source : Jobineries ) ... mais quand je nous compare, je me console.

Perles de culture

Cueillette fructueuse cette semaine : "Moi, je n'ai réussi aucun cours de maths au Cégep et pourtant, j'enseigne les mathématiques au secondaire." "Ça parle de nombres complexes et je n'ai aucune idée de ce que c'est qu'un nombre complexe." "C'est inutile de considérer comment on faisait de la géométrie avant, on a déjà de la difficulté à faire passer la matière dans sa forme actuelle, alors on n'a pas de temps pour rajouter d'autres façons de faire." "J'enseigne des choses que je ne comprends même pas moi-même." Lors d'une présentation sur un thème mathématique : "Je vais vous expliquer d'où ça vient, mais je ne vous parlerai pas de mathématiques : j'en ai fait toute la semaine, vous en avez fait toute la semaine, alors ça suffit." Et tout cela est tout droit sorti de la bouche d'enseignants-gnantes de mathématique dans une école près de chez vous !