Passer au contenu principal

Le cube de Naoki Yoshimoto





Ce cube est une preuve tangible du paradoxe de Banach-Tarski qui dit, grosso modo, qu'il est possible, dans un espace à 3 dimensions ou plus, de prendre une boule et de la séparer en un nombre fini de morceaux distincts qui peuvent être replacés de manière à obtenir deux modèles identiques de la boule originale.







On peut l'acheter du MoMA (Musée d'art moderne de New York) pour la "modique" somme de 60 $.

Mais bon, pourquoi dépenser quand on peut s'en fabriquer un soi-même ?





Sinon on peut toujours se contenter d'une version simplifiée qui saura sans doute occuper vos enfants. Vous ne retrouverez cependant pas les dodécaèdres, mais voilà une autre bonne raison de profiter du temps magnifique que nous avons et d'aller en chercher dehors !!!


Commentaires

Messages les plus consultés de ce blogue

Popboardz pour iPad

Une autre découverte de mon ami Jean-François. Popboardz est une simple application gratuite pour iPad.  Il s'agit en fait simplement d'un gestionnaire de contenu qui offre des fenêtres pouvant contenir des fichiers pdf, des documents, des vidéos, des images, des présentations, des sites Internet. Branché sur un projecteur, cette application permet de naviguer au cours d'une présentation selon les besoins de l'auditoire (ou les humeurs du présentateur). Cela reste bien magistral. Mais lorsque les étudiants s'emparent de cette application pour leur iPad, cela devient intéressant. Mikael a téléchargé l'application.  Il s'est présenté au cours avec dans une première fenêtre de l'application les notes de cours, dans l'autre la vidéo explicative des processus de résolution, dans l'autre la description de la tâche, dans l'autre une photo du tableau qu'il avait prise au cours précédent après avoir demandé des explications p

Arrimage difficile

"Avancez en arrière." Avec l'arrivée des réformés au Cégep, le MELS a décidé que c'était le tour du Cégep de se faire pousser dans sa "logique" du renouveau en moulant nos cours de mise à niveau non pas aux programmes vers lesquels ils mènent, mais en cohérence avec le programme du secondaire. Le Renouveau, en théorie On commence à apprivoiser les trois nouveaux profils mathématiques au secondaire : CST (Culture, société et technologie) : Axé sur la vie sociale, ce profil fera davantage appel à la statistique et aux mathématiques discrètes. On veut préparer les élèves à poursuivre dans le domaine des arts, de la communication ou des sciences humaines et sociales. TS (Technico-sciences) : Pour les « bidouilleux », les manuels, les ingénieux, ce profil met l’accent sur les études de cas, l’aptitude à repérer les erreurs, à établir des diagnostics, à dégager des processus mathématiques liés au fonctionnement ou à l’utilisation d’instruments liés à certa

Nombre curieux

Il y a quelques jours, nous recevions le Congrès de l'Association mathématique du Québec.  Lors de l'un des ateliers, Christian Côté présentait un nombre assez curieux pour qu'il plaise à mon collègue Pierre-Luc et qu'il me charme à son tour. Il se présente sous forme d'énigme. Est-il possible qu'un nombre irrationnel élevé à une puissance irrationnelle donne un nombre rationnel ? Nombre rationnel : Nombre pouvant s'écrire comme le rapport de deux entiers (une fraction quoi). Nombre irrationnel : Nombre qui n'est pas rationnel.  Dâh.  Les irrationnels les plus célèbres sont e, π, √2.